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optimal coefficient scaling

Libao Zhang (ÜÜÜááá���)1,2∗ and Kaina Yang (pppAAA)1

1College of Information Science and Technology, Beijing Normal University, Beijing 100875, China
2State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China

∗Corresponding author: libaozhang@163.com

Received January 3, 2012; accepted Feburary 21, 2012; posted online June 20, 2012

Integer wavelet transform (IWT) could offer the lower computational complexity and the less storage
spending for image compression than the discrete wavelet transform (DWT). But the most coefficients
of the IWT image have smaller dynamic change ranges than discrete wavelet transform. In this letter,
an efficient and low-complerity coding algorithm called embedded optimal coefficient scaling (EOCS) is
proposed. It optimizes the distribution of the wavelet coefficients in every threshold plane and provides
an efficient embedded quadtree-partitioning scheme to encode the image. Experimental results show that
the presented method cannot provide peak signal-to-noise ratio (PSNR) performance up about 2–6 dB
better than set partitioning in hierarohical trees (SPIHT) without the OCSF scheme, but also support
both efficiently lossy and lossless compression in single bitstream.
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The discrete wavelet transform (DWT) is widely used in
image compression. Based on the DWT, many efficient
coding algorithms were presented. For example, embed-
ded zerotree wavelet (EZW) and set partitioning in hier-
archical trees (SPIHT) algorithms based on the zerotree
scheme were found in Refs. [1-3]. In Ref. [4] SPECK and
EZBC were proposed with embedded zeroblock coding
scheme. based on DWT, these algorithms are efficient.
However, the main drawback of the DWT is that the
wavelet coefficients are floating-point numbers, which
increases the computational complexity and is not well
suited for efficient lossless coding application. The lift-
ing scheme (LS) presented by Sweldens[5] allows a low
complexity and efficient implementation of the DWT.
This allows new transforms to be used. One is the LS-
based integer wavelet transform (IWT) scheme[6].

Using reversible IWT for compression of image has
three advantages. Firstly, through the use of appropri-
ate techniques, a lossless decoding image can be recon-
structed. This point is very significant for medical and
remote sensing image processing. Secondly, IWT has
lower computational complexity than DWT because of
the LS. Finally, the use of IWT is also a means to re-
duce the memory demands of the compression algorithm
as integers are used instead of real numbers[7].

Although IWT is very interesting because of the pre-
viously cited advantages, its main drawback is that
the most image coefficients after IWT has smaller dy-
namic change value and worse energy compaction than
DWT, which would degrades the performances of the
lossy coding[8,9]. In this letter, an efficient and low-
complexity coding algorithm so-called embedded optimal
coefficient scaling (EOCS) is presented, which could op-
timize the distribution of the wavelet image coefficients
in every threshold plane by optimal coefficient scal-
ing factor (OCSF). During encoding, a simple, efficient
quadtree-partitioning scheme is proposed. Experimental
results show that the EOCS algorithm can performance
up about 2–6 dB better than SPIHT using 5/3 IWT with-
out OCSF in the lossy image coding.

The main drawback of the DWT is that the wavelet
coefficients are floating-point numbers. In this case
efficient lossless coding is not possible using DWT. The
LS presented by Daubechies et al.[6,7] supports the low-
complexity and efficient IWT scheme. Using IWT for
compression of image can reduce the memory demands
of the compression algorithm as integers are used instead
of real numbers, which is very significant for medical and
remote sensing image processing. Forward transforms
of (5,3) and (6,14) were evaluated in Table 1. In LS,
the integer wavelet transforms can be described through
polyphase matrix using Euclidean algorithm as

P (z) =
m∏

i=1

[
1 si(z)
0 1

] [
1 0

ti(z) 1

] [
K 0
0 1/K

]
,

(1)

where P (z) and P̃ (z) can be defined as analysis filters;
si(z) and ti(z) can be defined as Laurent polynomials.
General interpolating biorthogonal integer wavelet trans-
form (IB-IWT) can be described as

P (z) =

m∏

i=1

[
1 s(z)
0 1

] [
1 0

t(z) 1

]
. (2)

IB-IWT is the efficient and low complexity IWT for
image compression. Several forward transform of IWTs
can be found in Table 1.

In Table 1, we use the notation (x, y) to indicate that
the underlying filter bank has lowpass and highpass anal-
ysis filters of lengths x and y, respectively. In the for-
ward transform equations, the input signal, lowpass sub-
band signal, and highpass subband signal are denoted as
x[n], s[n], and d[n], respectively. For convenience, we also
define the quantities s0[n]=x[2n] and d0[n]=x[2n+1].

Although IWT can allow both lossy and lossless com-
pression using single bitstream, its lossy compression per-
formance is not as efficient as that of DWT. Experimen-
tal results show that using the IWT instead of the DWT
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Table 1. Several Forward Transform of IWTs

Name (x, y) Forward Transform of IWT

(5,3)

{
d[n] = d0[n] − ⌊1/2(s0[n + 1] + s0[n])⌋

s[n] = s0[n] + ⌊1/4(d[n] + d[n − 1]) + 1/2⌋

(6,14)






d1[n] = d0[n] − s0[n]

s[n] = s0[n] + ⌊1/16(8d1[n] + d1[n − 1] − d1[n + 1]) + 1/2⌋

d[n] = d1[n] + ⌊1/16(s[n + 2] − s[n − 2] + 6(s[n − 1] − s[n + 1]) + 1/2⌋

(13,7)

{
d[n] = d0[n] + ⌊1/16((s0[n + 2] + s0[n − 1]) − 9(s0[n + 1] + s0[n]) + 1/2)⌋

s[n] = s0[n] + ⌊1/32(9(d[n] + d[n − 1]) − (d[n + 1] + d[n − 2]) + 1/2⌋

degrades the peak signal-to-noise ratio (PSNR) perfor-
mances of the lossy coding. For example, the PSNR
value decreases 6 dB for Barbara image using the IWT-
based SPIHT and decreases 5 dB for Lena image using
the IWT-based SPIHT. Two main drawbacks are found
to degrade the IWT lossy performance[1]. 1) The re-
versible IWT is not orthonormal, and the information
content of each coefficient is no longer directly related
to magnitude; this is particularly harmful for encoders
with rate allocation based on bitplanes, such as EZW,
SPIHT and SPECK coding scheme; 2) to guarantee all
transform coefficients being integer values for integer in-
puts, mantissa-rounding operations are adopted. So the
RB-IWTs are the nonlinear transform.

In Ref. [9], subbands scaling is introduced for ensur-
ing optimum rate-distortion performance. However, sub-
bands’ scaling only solves the first problem. In this letter,
we propose a OCSF K based on LS in Eq. (1). If we only
consider the biorthogonal DWT based on the same LS,
the OCSF can be computed using a method similar to the
one described in Ref. [5]. However, the IWT is the non-
linear because of the rounding operations. The computa-
tion for OCSF is very difficult. We use many experiments
to analyze the OCSF value for different IWTs. Exper-
imental results show two significant conclusions for the
OCSF: 1) the OCSF value of IWT is near that value of
biorthogonal DWT; 2) if the lowpass and highpass anal-
ysis filters of the underlying filter bank are shorter, its
OCSF is higher. When the lowpass and highpass analy-
sis filters are longer, the OCSF will be smaller.

Figures 1 and 2 show the PSNR values comparison of
lossy compression performance of 6/14 IWT at different
K values for test image Barbara and Lena.

Fig. 1. PSNR value comparison of lossy compression perfor-
mance of 6/14 IWT at different K values for Barbara.

Fig. 2. PSNR value comparison of lossy compression perfor-
mance of 6/14 IWT at different K values for Lena.

We adopt the integer powers of two as the thresh-
old of coefficient quantization. We say that a set Ω of
coefficients is significant with respect to n if

max
(i,j)∈Ω

{|ci,j |} > 2n(n = 0, 1, 2, 3 · · · ). (3)

Table 2. OCSF of Several IWTs

IB-IWT (5, 3) (2, 10) (6, 14) (13, 7)

OCSF 1.412 1.417 1.406 1.385

Otherwise it is insignificant. We can write the sig-
nificance of a set Ω as

Γn(Ω) =

{
1, if 2n 6 max

(i,j)∈Ω
|ci,j | < 2n+1

0 else
. (4)

According to the definition of thresholds, the basic
steps of embedded quadtree-partitioning scheme (EQPS)
are presented as following. 1) Start with S as the root
set and set all transform coefficients to S. Append set
S to an array of insignificant sets and pixels, called the
AISP; 2) the significance test is adopted for the same
n to each of these sets S belonged to the AISP. If S is
significant for threshold nmax, it is partitioned by the
quadtree-partitioning scheme. Set S is spitted into four
quadrant sets, collectively denoted O(S); 3) significant
sets continue to be recursively split until all there are
four pixels, whereupon, the significant ones are found
and appended to a list of significant pixels, called the
LSP and output its sign; 4) for the insignificant sets and
pixels, their sizes and coordinates can be appended to
the AISP; 5) for each(i, j) ∈ LSP , except those included
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in the last sorting pass, output the nth MSB of |ci,j |; 6)
decrement n by 1, and go to step 3, until n is equal to 1.

Figure 3 shows the partitioning scheme of the EQPS-
based coding algorithm for image coefficients after IWT.

The EQPS algorithm has three primary advantages for
IWT-based coding. Firstly, the OCSF is proposed for
improving energy compaction of IWT. Secondly, it sets
all image transform coefficients as partitioning set in ini-
tialization and adopts simple quadtree partitioning and
reduces the computational complexity. Finally, during
initialization, an array called the AISP is used, so only are
the first coefficient coordinates and sizes of insignificant
sets are put into AISP, which reduce the coding complex-
ity of the presented method.

Figure 4 introduces the block diagram of the EOCS al-
gorithm.

In the experiments, we compared the IWT-based
EOCS algorithm with the IWT-based SPIHT for the
lossy coding. Table 3 shows that the encoding and decod-
ing times comparison between the presented algorithm
and IWT-based SPIHT for 512×512 remote sensing im-
age. The (5, 3) filter was used to decompose and syn-
thesize the image. The Intel Pentium D personal com-
puter and VC++6.0 were used. No arithmetic coding was
used on the quadtree-partitioning scheme, significance
test and any symbols produced by the presented SPIHT.

Figure 5 gives the decoding results of Barbara image
using the proposed EOCS algorithm based on (6, 14) at
0.25 and 1.0 bpp.

Figure 6 gives the decoding results of remote sensing
image using the proposed EOCS algorithm based on (6,
14) at 0.25 and 1.0 bpp.

In Table 4, the PSNR performances using the EOCS
algorithm based on (5, 3), and (6, 14) without arithmetic
coding for remote sensing image are shown and compared
with the results of SPIHT using (5, 3) and (6, 14).

Table 4 shows the comparison of the lossy compression

Fig. 3. Partitioning scheme of the EQPS-based coding algo-
rithm.

Fig. 4. Block diagram of the EOCS algorithm.

Table 3. Encoding and Decoding Times Comparison
between the Presented Algorithm and IWT-based

SPIHT for 512×512 Remote Sensing Image

Rate(bpp)

IWT-based EOCS IWT-based SPIHT

Encoding Decoding Encoding Decoding

(ms) (ms) (ms) (ms)

0.25 33 24 46 38

0.5 60 43 76 65

1.0 113 85 141 118

Fig. 5. Decoding results of Barbara using EOCS algorithm
based on (6, 14). (a) 0.25 bpp and (b) 1.0 bpp.

Fig. 6. Decoding results of remote sensing image using EOCS
algorithm based on (6, 14). (a) 0.25 bpp and (b) 1.0 bpp.

Table 4. Comparison of Different Lossy Coding
Methods Using IWT for Remote Sensing Image

Rate IWT-based EOCS (PSNR) IWT-based SPIHT (PSNR)

(bpp) (5, 3)(dB) (6, 14)(dB) (5, 3)(dB) (6, 14)(dB)

0.25 21.91 22.07 19.09 18.67

0.5 23.74 23.95 20.53 19.89

1.0 26.82 27.12 24.06 23.07

performance between the IWT-based EOCS algorithm
and the IWT-based SPIHT for remote sensing image im-
age. In this comparison, (5, 3) and (6, 14) IWT are
adopted at the 0.25, 0.5, and 1.0 bpp. The EOCS algo-
rithm uses the OCSF for each IWT, and the SPIHT uses
the common IWT, which the scaling factor K is 1. The
presented method provides PSNR performance up about
2–6 dB better than SPIHT without scaling.

In conclusion, we propose an efficient and low-
complexity image coding algorithm using IB-IWT based
on EOCS. Two strategies-OCSF and EQPS are adopted.
The presented method has four primary advantages. The
OCSF of LS obtains the low computational complexity of
IB-IWT. The OCSF improves the lossy compression per-
formance of IB-IWT. The single quadtree partitioning
scheme realizes the lower coding complexity than SPIHT
and EBCOT that is adopted by JPEG2000. This new al-
gorithm can support both lossless and lossy compression
using a single bitstream efficiently.

This work was supported by the National Natural Sci-
ence Foundation of China (Nos. 60602035 and 61071103)
and the Foundation of State Key Laboratory of Remote
Sensing Science (No. OFSLRSS201001).
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